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Applications of Sphere Geometry

in Canal Surface Design

Christoph Maurer

Abstract. Classical models of sphere geometry facilitate an efficient
description of canal surfaces. Using the cyclographic model of Laguerre
geometry, an elementary characterization of continuity, bisectors, control
point-, control sphere- and implicit representations of canal surfaces is
presented. In addition, canal surfaces generated with the aid of Minkowski
Pythagorean hodograph curves are investigated.

§1. Introduction

A canal surface C in R 3 is defined as the envelope surface of a moving sphere
S(t) with center m(t):= (mI(t), m2(t), m 3 (t)) and radius function r(t). The
moving sphere can be described with the implicit equation

F(x, t) = 1lx - m(t)112 
- r 2 (t) = 0. (1)

The envelope condition

aFOt_ - [Ix - m(t)]. viz + r(t)÷(t) = 0 (2)

describes a moving plane, which intersects S(t) in the characteristic circles of
the canal surface. It is a natural approach to use models of classical sphere
geometry to study canal surfaces. Well-known models have been investigated
in M6bius geometry, Laguerre geometry and Lie geometry. For an overview
on sphere geometry, the reader may consult [2]. Papers which handle sphere
geometry in the CAGD context are [7,8,10,11,12].
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Fig. 1. Hyperbolic, parabolic and elliptic sphere families.

§2. Fundamentals of Laguerre Geometry

In the cyclographic model R3, 1 of Laguerre geometry, a sphere S with center
m = (ml, m 2, m 3 ) and radius r is described as a point s = (ml, m 2, m 3 , r) T ER3,1. It is an intuitive model, since the space of points (spheres with vanishing

radius) is embedded in the cyclographic model as the hyperplane x4 = 0. The
absolute quadric Q, which reads in homogeneous coordinates (ji/xo :-- xi) as

X : x 2 + X2 + X2 - X =0 plays an important role. It defines a pseudo
Euclidean (pe) metric in R3, 1 via the scalar product

(a, bp := alb, + a 2b2 + a 3b3 - a 4b4. (3)

The pe distance Ila - bllpe := /a - b, a - b)p, of two points a, b E R3,1
measures the tangential distance of two spheres A,B. First we study the
most simple family of spheres described as a line L with direction vector a
in R3,1. There are three cases: If (a, a)p, > 0, then L is called a hyperbolic
line corresponding to a family of spheres whose envelope surface is a right
circular cone (Fig. 2, left). If (a,a)p, = 0, then L is called a parabolic or
isotropic line belonging to spheres in oriented contact. If (a, a)p, < 0, then L
is called a elliptic line and two arbitrary spheres of such a family do not have
a common tangent plane. These three cases of sphere families are plotted
in Fig. 1 (but to simplify matters in R 2 instead of R 3 ). A canal surface
is completely determined by the set of its tangent cones. They belong to
hyperbolic tangent vectors of a curve c(t) G R3,1. Vice versa, the set of
hyperbolic tangent vectors of c(t) corresponds to the set of tangent cones of a
canal surface along the characteristic circles. For elliptic tangent vectors, there
does not exist a real tangent cone. Therefore, that case has to be avoided in
the specification of canal surfaces. Discrete parameter values to with parabolic
tangent vectors (116(to)llpe = 0) are tolerated. At these parameter values, the
canal surface is closed (Fig. 2 right).

Corollary 1. Any real G'-continuous canal surface C in R3 can be described
as a G1 -continuous curve c(t) E R3, 1 with hyperbolic tangent vectors.

A Laguerre transformation 7- in R3, 1 is an affine mapping x ý- AAx + b,
0 < A G JR which preserves Q. It turns out that this condition is fulfilled iff
A is an orthogonal matrix with respect to the pe metric, i.e.

ATEpeA = Epe := diag(l, 1, 1, -1). (4)
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Fig. 2. Left: Tangent cone of two spheres; right: Effect of parabolic tangent vector.

Therefore, Laguerre transformations are pe similarities in R3, 1. Since the
Euclidean space R 3 is embedded in R 3,1 , any Euclidean translation or rotation
is a Laguerre transformation. The offset operation with offset distance d is
described as a translation Td in the x 4-direction (A = 1, A = E, b = (0, 0, 0, d)).
A further example is the pe rotation around a fixed 2-plane. If the x2 , x3-plane
is fixed, the pe rotation is represented by

(x, ) _ (cosh a sinha x 1 (5)
Tr: X4 J \sinha cosha] x4 (5)

Any Laguerre transformation with A = 1 preserves the tangential distance.
The following examples show how Laguerre transformations act on simple
curves of 1R3,1.

Example 1. Consider a straight line L E R3. The image line under the offset
mapping Td describes a cylinder. An additional pe rotation rr o Td(L) yields a
hyperbolic line corresponding to a right circular cone. Vice versa, any hyper-
bolic line in 13,1 can be mapped via an appropriate Laguerre transformation
to L.

The line in Example 1 does not change its type under the mappings r, and
Trd. Since the sign of (a, a)pe is not modified by any Laguerre transformation,
we obtain:

Corollary 2. The type (hyperbolic, parabolic, elliptic) of straight lines in
the cyclographic model R ' is invariant under Laguerre transformations.

Example 2. Consider a Euclidean circle K E W3. Its image rd(K) describes
a torus, and the pe circle r, o Td(K) corresponds to a Dupin cyclide. Any
Dupin cyclide can be interpreted as a circle in R3,1 with respect to the pseudo
Euclidean metric. For more details and a proof of this fact, see [7].

The pe circles might be utilized to describe G2-continuity between canal
surfaces: The osculating pe circle of a curve c(t) E R3,1 belongs to the oscu-
lating cyclide of a canal surface C, which specifies the curvature behaviour of
C. A technique to compute osculating circles of space curves in the Euclidean
and non-Euclidean space is given in [1].
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§3. Isotropic Hypersurfaces

Definition 1. Let C C JR3 be an oriented C 1 -continuous canal surface, which

belongs to the curve c E JR3,1. The isotropic hypersurface 17(c) C R 3"1 is the
union of all points in JR3'1 corresponding to all oriented tangent spheres of C.

For a fixed surface point of C, all oriented tangent spheres are represented
as isotropic lines in ]R3'1 . Therefore, 17(c) is formed by a two-parametric
family of isotropic lines. Applying Corollary 2 to the definition of isotropic
hypersurfaces, we obtain:

Proposition 1. Isotropic hypersurfaces are invariant under Laguerre trans-
formations T(F(c)) = F(r(c)).

The simplest example is the isotropic hypersurface of a sphere S specified
by a point s E JR3 '1 . It is a hypercone F(s) = (x - s,x - s), = 0. Now

consider a canal surface C characterized by a curve c(t) e R 3'1 with hyperbolic
tangent vector 6(t). As shown in [7], its isotropic hypersurface can be achieved
in a two-step procedure: First intersect the pe polar plane *pJ-(t) with the

absolute quadric Q (the pe polar plane ale of a vector a E R 3,1 is defined as± T

(a1 : aEpx = 0). Then join the resulting family of conics k(t, s) and the
curve points c(t) with straight lines. Or as a formula:

r(c) = Ut c(t) * f{'J-(t) n Q},

where A * B denotes all straight lines joining A and B.
Isotropic hypersurfaces have several properties which can be applied in

the context of geometric design:

Proposition 2.

1) The intersection of the isotropic hypersurface F(c) with JR3 generates the
canal surface C itself. 1(c) n R 3 = C.

2) The intersection of rd(F(c)) with JR3 gives the offset surface of C.

3) Consider two canal surfaces C1, C2 E JR3 with corresponding curves
Ci(t), c 2(t) E JR3 "1. These canal surfaces touch each other if c2 is lying on
r(cl) (resp. if c, is lying on r(c 2 )).

4) The bisector surface of C, and C 2 is formed by the orthogonal projection
of {F(cl) N F(c 2)} to R 3.

Proof: 1) The tangent spheres with radius zero of a canal surface are pre-

cisely its surface points. They are contained in the hyperplane JR3 of the
cyclographic model. 2) follows from the offset property of Td and Proposition
1. 3) follows immediately from Definition 1. To prove 4), note that the bisec-

tor is characterized as the center of spheres which have oriented contact to C,
and C2. In JR3'1 these spheres are characterized by {F(cl) N F(c 2)}. El

We complete this section with few examples which make use of Laguerre
transformations and isotropic hypersurfaces.
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Fig. 3. Bisector of 2 spheres, resp. of sphere and canal surface.

Example 3. Using the previous proposition and Example 2, implicit and
parametric representation of cyclides C can be derived easily. With a Laguerre
transformation r, the corresponding pe circle can be mapped to a simple
normal form _ = = x• +x• - = 0 of a image cyclide C. Its isotropic
hypersurface reads in implicit form as

r(a): (_0 +x +_ X + •2•_ X2) 2 24_( + ) = 0,

and in parametric form as

(Xýo(•, V, ), -1(•, V, •), •2(u, , ), •-ý3(U, V, ), •-4(U, V, ))=
([1 - wJ[1 + v 2] + w[1 - u 2], [1 - w][1 - v2], 2[1 - w]v, 2wu, - w[1 + u 2]).

The implicit and parametric representation of the original cyclide C can be
obtained from {r- 1 (F(E)))}nR 3 . The intersection procedure is straightforward,
since r is a linear mapping. In the parametric case, the parameter w can be
eliminated easily, because it occurs linearly in the parameter representation.

Example 4. Consider two spheres S1, S2 specified by points 81, 82 E R
The intersection F(sl) n F(S 2) of their isotropic hypersurfaces is contained in
the hyperplane H 12 : (x - (S1 + 82)/2, S2 - 8I)pe = 0. Thus, the bisector of S1
and S2 is the orthogonal projection of H12 n F(s1 ) onto 1R3.Since r(s8) is a
hypercone, the bisector surface is a quadric surface. Fig. 3 shows two spheres
and a part of their bisector surface (hyperboloid of two sheets).

Example 5. A similar technique allows the computation of the bisector of a
sphere S and a canal surface C (specified by s and c(t) E R3,1). Now, H12 (t) :
(x - (s + c(t))/2, c(t) - s)p = 0 depends on t. The bisector surface is obtained
by the orthogonal projection of H1 2 nl r(c) onto R3. For a rational canal
surface, 1(c) is a rational ruled hypersurface with parameter representation
g(t, u, v) in 1R13,1 which is linear in v. After the intersection and projection
operation, we obtain a rational bisector surface b(t, u). Fig. 3 depicts the
bisector b(t, u) of a sphere and a canal surface c(t, u) with cubic spine curve
and rational parametric degree (7,2). b(t, u) has parametric degree (10,2).

Rational bisectors of spheres and PN surfaces are studied in [3]. Fur-
ther applications of the concept of isotropic hypersurfaces can be found in [8]
(tangent plane property) and [12] (offset property).
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Fig. 4. Cyclide and cubic canal surface with control spheres.

§4. Control Sphere Representation
Consider a B1zier curve

n

X(t) = SkBk(t) (6)
k=0

of degree n in the cyclographic model with control points sk E R3,1. They
correspond to control spheres of the canal surface C described by x(t). Well-
known properties of the Bernstein-B zier technique can be applied directly to
the Laguerre geometric approach (this idea was introduced in [12]):

Proposition 3.

1) The de Casteljau algorithm enables a stable computation of the moving

spheres of a canal surface and can be used to subdivide it into two parts.
2) The control spheres So and S1 (S, and Sn-x) generate the tangent cone

of the canal surface at t = 0 (t = 1).
3) A (rational) canal surface (with positive weights) lies in the convex hull

of its control spheres.

The control structure is useful from the designers point of view because
the influence of moving the control spheres or changing their radius or weights
is analogous to the well-known curve case. For example, Fig. 5 views the
influence of modifying one weight of a canal surface with cubic spine curve:

The weight 31 is increased from 1 (left) to 10 (right). All other weights satisfy

3i= 1.
We have seen some advantages of using the control sphere representation

of canal surfaces. However, often it is necessary to know a (rational) tensor-
product representation. Therefore, one has to analyze the correlation between
control spheres and classical control points of a canal surface. For the cyclide
case there exists a simple geometric relation, which is described in [8]. In
the case of an arbitrary canal surface, the problem was solved by Pottmann

and Peternell [11]. They proved the surprising result that any canal surface
with rational spine curve m(t) and rational radius function r(t) is rational.
Furthermore, they proved that the problem of finding the rational tensor-
product representation can be reduced to the problem of finding two rational
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Fig. 5. Influence of different weights.

functions pl(t) and p2 (t) which satisfy

2 2 = + := + + r - (7)

Although the existence of solutions of (7) can be proved via factorization over
the complex field, it is not trivial to find the (non-unique) solutions. There
are two different options to perform the conversion from control spheres to
control points:

1) Use arbitrary rational curves x(t) E R3,1 to describe canal surfaces. Then
it is impossible to solve (7) exactly and numerical methods are required
to compute the control points from the control spheres of the dedicated
canal surface.

2) Use rational curves x(t) E R3,1 which have the property that p(t) is
a square in the polynomial ring IR[t]. Then an exact conversion from
control spheres to control points can be realized using the algorithm of
Pottmann and Peternell [11].

In this paper we will follow the second option. It results in the concept
of Minkowski Pythagorean Hodograph curves.

§5. Minkowski Pythagorean Hodograph Curves in R 3,1

Planar and spatial Pythagorean hodograph curves have been introduced by
Farouki and Sakkalis [4,5]. Recently Moon [9] has generalized this class of
curves and investigated the Minkowski Pythagorean hodograph (MPH) curves
of R 2,1. Here we need a further generalization: the MPH curves of R 3,:

Definition 2. A polynomial (rational) curve x(t) = (xl(t), x 2 (t), x3(t), x 4 (t))
in R3,1 is a Minkowski Pythagorean hodograph (MPH) curve if there exists a

real polynomial (rational function) u(t) which satisfies

ýbl(t) + •ý(t) + •2(t) _ ý2(t) = U2(t). (8)

As described before, for canal surfaces described via MPH curves of R 3,1

an exact conversion from control spheres to control points can be realized. We
now present some additional important properties of MPH curves.
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Proposition 4.

1) The tangent vector of a MPH curve is hyperbolic except a finite number of
parabolic tangent vectors, i.e., the corresponding canal surface is always
real.

2) The MPH property is invariant under Laguerre transformations.
3) PH space curves are exactly those MPH curves, which hold X4 = 0

Pe circles are examples for rational MPH curves of degree 2. In order to
create polynomial MPH curves, equation (8) could be solved in a polynomial
ring R[t]. A possible solution (determined via stereographic projection) is

(@i(t), d•2(t), d•3(t), dx4(t), u(t)) =(9

(2uou-, 2uoU2, - +U + U 2 _2, 2uOU3, U2 + U2+ U2 2) (9)020•l 1••2 2U U3_ 02 1• 22 3*

The polynomials u(t) := (uO(t), u1 (t), u 2 (t), u 3(t)) of degree n are mapped via
(9) to polynomials of degree 2n. Taking account of xi(t) = fýi(t) dt + C
with i =1,..., 4, we obtain a polynomial MPH curve of degree 2n + 1. Due
to space limitations, we postpone a more detailed description. However, the
basic principles of the analytic construction are the same as for MPH curves
of R2,1, which are inspected by Moon [9] in detail.

An alternative approach is to construct MPH curves as Laguerre images
of PH curves. For example, one could make use of well-known properties
on spatial PH cubics [5,6,14] for building MPH cubics. Consider a cubic
MPH B~zier curve x(t) with control points bo,b l ,b 2,b 3 E ]3,1R. bo and bl
resp. b2 and b3 define two hyperbolic tangent vectors tl and t 2 , which span a
three-dimensional plane H3. If there exits a Laguerre transformation 7 with
T(H 3 ) = R 3, then x(t) = T-r(y(t)) is a Laguerre image of a (spatial) PH
cubic y(t) E R 3 (that fact comes from properties 2) and 3) of proposition 4
in combination with the convex hull property of Bdzier curves).

Proposition 5. Consider a hyperplane H3 C R3, 1 spanned by two skew
hyperbolic lines t1 and t2 . There exists a Laguerre transformation T with
T(Hi3 ) = -R 3 iff all lines joining tl and t 2 are hyperbolic.

Proof: All straight lines in R3 are hyperbolic. Because of Corollary 2, it
is necessary for the existence of T, that any line of the linear congruence
tl * t 2 is hyperbolic, too. The sufficiency is proved by construction: With a
pe rotation r, one hyperbolic line t, can be mapped to ]R3. Ti(ti) and the
point p := •i(t 2 ) n R 3 span a 2-dimensional plane H2 C J 3 . An appropriate
Euclidean motion r2 maps H2 onto the x2 ,x 3-plane. Let q = (ql,0,0, q4)
be the intersection point of T2 o -T(t 2 ) with the x 1 ,x 4-plane. Case 1) 1ql <
q41: the pe rotation (5) with a =arctanh(-ql/q 4) maps T2 o T-1(H 3 ) onto
the hyperplane x, = 0. Since it contains elliptic lines, this contradicts the
assumption that tl * t2 is hyperbolic. Case 2) Iql = 1q4J : T2 0 TI(rH

3
) is

the hyperplane x, = X4. Since it contains parabolic lines, we also get a
contradiction. It remains to consider Case 3) Iq1l > Jq41: the pe rotation (5)
with a =arctanh(-q 4/ql) maps r2 o r 1 (113) onto R 3 . E]
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Fig. 6. Interpolation of spheres with cyclide spline.

§6. Interpolation with Canal Surfaces

Finally we briefly discuss simple interpolation problems concerning canal sur-
faces. The construction of canal surfaces which interpolate given spheres or
tangent cones is reduced in the cyclographic model to finding an interpolating
curve in R3,1. Therefore, standard algorithms can be generalized from IR3

to R3,1 in order to solve the problem. Indeed, one has to take into account
that these methods could generate curves with elliptic tangent vectors, which
does not comply with real canal surfaces! This problem can be avoided using
algorithms which deal with MPH curves.

Example 6. n + 1 spheres Pi (i = 0,...,n) can be interpolated with a G1-
continuous cyclide spline (Fig. 6). Each piece is characterized by a pe circle
segment with control points bk,i E W 3,1 and weights fOk,i E R, k = 0, 1, 2.
Per given tangent vector ti-1 at Ps-i the segment is determined uniquely.
Thus with any starting vector to, the pe circular spline curve can be produced
successively. To perform the computation, one can generalize an ordinary
circular spline algorithm. The formulas (10) are cited from [13], just replacing
the Euclidean metric by the pe metric:

bo,i = p i b- , = , i-1+ 2(Api,ti-1)pI e b2,i = P i,

(Api,t--l)pe

Ooi = 1, , = II pII -Ip ' 2, = 1.

The only condition on the input data is II Api lp := I1p -p 11 > 0, i.e., the
spheres Pi-1 and Pi cannot lie inside each other.

Example 7. A piecewise Hermite interpolant can be realized with a cu-
bic MPH canal surface. Consider two spheres Pi-1, Pi (specified by points
Pi-1, pi in R 3 '1) and tangent cones Ti-1, Ti (described as hyperbolic lines
t ,-l,t C JR3, 1 spanning a hyperplane I3 C JR3, 1). If this input data satisfy
the condition of Proposition 5, then there exists a Laguerre transformation
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7- which maps H3 to ]R 3, and a well-known Hermite interpolation algorithm
[6,14] produces a cubic PH Hermite interpolant c(t) E R 3 . Its Laguerre image
T1-(c(t)) is a cubic MPH curve and interpolates the original input data.
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